Fourier-Reflexive Partitions Induced by Poset Metric

نویسندگان

چکیده

Let H be the cartesian product of a family finite abelian groups indexed by set Ω. A given poset (i.e., partially ordered set) P = (Ω, ≼P) gives rise to metric on H, which further leads partition Q(H, P) H. We prove that if is Fourier-reflexive, then its dual Λ coincides with Ĥ induced P, and moreover, necessarily hierarchical. This result establishes conjecture proposed Gluesing-Luerssen in [5]. also show some other assumptions, finer than P. In addition, we give necessary sufficient conditions for hierarchical, case an explicit criterion determining whether two codewords belong same block Λ. these results relating involved partitions certain polynomials, generalized version studied generalize aforementioned results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier-reflexive partitions and MacWilliams identities for additive codes

A partition of a finite abelian group gives rise to a dual partition on the character group via the Fourier transform. Properties of the dual partitions are investigated and a convenient test is given for the case that the bidual partition coincides the primal partition. Such partitions permit MacWilliams identities for the partition enumerators of additive codes. It is shown that dualization c...

متن کامل

Linear extensions and order-preserving poset partitions

We examine the lattice of all order congruences of a finite poset from the viewpoint of combinatorial algebraic topology. We will prove that the order complex of the lattice of all nontrivial order congruences (or order-preserving partitions) of a finite n-element poset P with n ≥ 3 is homotopy equivalent to a wedge of spheres of dimension n − 3. If P is connected, then the number of spheres is...

متن کامل

A poset structure on quasifibonacci partitions

In this paper, we study partitions of positive integers into distinct quasifibonacci numbers. A digraph and poset structure is constructed on the set of such partitions. Furthermore, we discuss the symmetric and recursive relations between these posets. Finally, we prove a strong generalization of Robbins’ result on the coefficients of a quasifibonacci power series.

متن کامل

On metric spaces induced by fuzzy metric spaces

For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm,  we present a method to construct a metric on a  fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space.  Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...

متن کامل

Finite Metric Spaces and Partitions

For example, IR with the regular Euclidean distance is a metric space. It is usually of interest to consider the finite case, where X is an n-point set. Then, the function d can be specified by ( n 2 ) real numbers. Alternatively, one can think about (X,d) is a weighted complete graph, where we specify positive weights on the edges, and the resulting weights on the edges comply with the triangl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2021

ISSN: ['0018-9448', '1557-9654']

DOI: https://doi.org/10.1109/tit.2021.3128630